
Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

ARROWS: a Computer Algebra System in Smalltalk

Luciano E. Notarfrancesco luchiano@gmail.com

Reviewed on OpenReview: https: // openreview. net/ forum? id= oIozVmVool

Abstract

We describe the design and implementation of Arrows, a computer algebra system in
Smalltalk-80. After giving a general overview of the system, we focus on rings and their
modules. We discuss various types of rings and show how to solve systems of linear equations
over them, which allows us to construct finitely presented modules and other interesting
objects. We illustrate different parts of the system with concrete examples of use.

1 Introduction

The goal of the Arrows project is to build an extensible environment where one can construct mathematical
objects (such as groups, rings, modules, algebras, schemes, etc) and their morphisms and elements.

The system is built on top of Cuis Smalltalk [Vul22b], an open source and multiplatform Smalltalk-80 system.
We try to follow conventional mathematical notation as close as possible, while still adhering to Smalltalk
syntax (although we’re considering extensions to the Smalltalk syntax as proposed in [CB22, § 4 and § 5]).
Cuis Smalltalk allows Unicode in Smalltalk code [Vul22a], and we take full advantage of this; for example
we have messages like A → B, A ⊕ B and A ⊗ B, and global variables like Z and Q.1

The system was built from scratch and it is completely written in Smalltalk without any external dependen-
cies, and following Smalltalk’s First Design Principle2 [Ing81] it is designed to be entirely comprehensible to
single individuals.

Some of the objects implemented include: various types of finite rings and fields, affine algebras, number
fields, function fields, finitely presented modules, finite (finitely generated as modules) algebras, schemes
(affine schemes, and closed subschemes of affine or projective space), coherent sheaves, and bounded (co)chain
complexes in arbitrary abelian categories (e.g. modules, coherent sheaves, or recursively other categories of
complexes).

Many computations with these objects can be reduced to systems of linear equations over some relatively
simple commutative ring. The core of the system relies on Gaussian elimination over fields, algorithms for
computing Hermite normal forms over Euclidean domains and Howell normal forms over Euclidean rings
(possibly with zero divisors), and a generalization of Buchberger’s algorithm for computing strong Gröbner
bases of modules over polynomial rings with coefficients in Euclidean rings (possibly with zero divisors).

In the following sections we will introduce the fundamental concepts of the system, show examples of use,
and go over some constructions and implementation details. We will focus on rings and modules, and some
other categories will make a tangential appearance in examples that illustrate how the system works.

1We can input→, ⊕, ⊗, Z and Q by typing \to, \oplus, \otimes, \Z and \Q respectively. In general we use standard LaTeX
commands to input special characters.

2Personal Mastery: if a system is to serve the creative spirit, it must be entirely comprehensible to a single individual.

1

https://openreview.net/forum?id=oIozVmVool

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

2 Domains and Morphisms

The most fundamental concepts in the system are domains and morphisms. Domains are objects of a
category; that is to say, they are the domains and codomains of morphisms.3 Concrete examples of domains
are algebraic structures with an underlying set of elements such as groups, rings and modules, as well as
objects without elements such as chain complexes and sheaves.

Given a domain A, the message A id returns the identity morphism of A. And given B in the same category,
the message A ⇒ B answers the hom-set or hom-object Hom(A,B). We can also compose morphisms
f : X → Y and g : Y → Z with the message g ◦ f.

The hom message is a functor. Given a morphism f : X → Y , A ⇒ f answers the map from Hom(A,X)
to Hom(A, Y) that sends a morphism g to f ◦ g. Similarly, f ⇒ B answers the map from Hom(Y,B) to
Hom(X,B) that sends g to g ◦ f .

2.1 Canonical Morphisms

By relying on universal constructions we guarantee that the objects we construct on the computer are, for
all intents and purposes, the actual mathematical objects. Universal constructions produce objects equipped
with morphisms satisfying certain universal properties, for example a quotient A/B comes with the projection
π : A → A/B. There are also morphisms uniquely determined by their domain and codomain, for example
the canonical ring homomorphism from Z to any (unital) ring.

The message A → B returns the canonical or universal morphism from A to B, or nil if there’s none. This
message is a fundamental notion in the system and it is used extensively. For example, the canonical ring
homomorphism from Z to a ring R can be retrieved with the message Z → R.

For products and other limits there’s also A ⇒ {B1. ... Bn} that returns a list of projections πi : A→ Bi, and
for coproducts and other colimits B ⇔ {A1. ... An} returns a list of coprojections ιi : Ai → B. For example,
the projections from a Cartesian product X := A × B to A and B can be obtained with the message X ⇒
{A. B}.

2.2 Domains with Elements

Some domains have an underlying set of elements or carrier set. Examples of these domains are algebraic
structures such as groups, rings and modules, as well as sets themselves. We can test elements for equality
a = b and membership a ∈ A.

Every element is associated to a parent domain, and it is a member of its parent’s carrier set. However, an
element can be a member of other domains besides its parent, even in different categories. For example, a
square matrix has as parent a hom module End(Rn), but it is also a member of a matrix algebra Mn(R),
and if it is invertible it is also a member of the general linear group GL(n,R).

Morphisms of domains with elements are maps and can be created by specifying the mapping on elements
with the message A to: B map: aBlock. For example, given a ring R of characteristic p, the message R to: R
map: [:x | x ˆ p] answers the Frobenius endomorphism.

There is a coercion mechanism that allows the conversion of elements between domains based on known
canonical morphisms. For example, for a unital ring R and a rational integer n, we can send the message
R ! n to obtain 1R · n in R (that is, 1R + · · ·+ 1R, or its additive inverse if n is negative). This is equivalent
to evaluating the initial morphism of R at n with Z → R value: n.

It also makes sense to coerce elements between domains of different categories. For example, the number
field Q(i) can be viewed as the vector space Q2, and while one is a ring and the other is a module, elements
of one can be coerced to the other.

3Unfortunately the name “object” is already taken in Smalltalk. To minimize confusion we avoid saying “domain” to mean
“integral domain”.

2

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

When the carrier set of a domain is countable, it is desirable to implement an enumeration of its elements
without repetitions, with the guarantee that any given element can be reached in a finite number of steps.
The availability of these enumerations is important to us because, by exhaustive search, we can turn otherwise
undecidable problems into semi-decidable problems. In some cases the enumeration can be ordered by size4,
and this allows us to restrict problems on infinite sets to decidable problems on finite subsets of elements up
to a given size.

Example 2.2.1. (Enumerating elements). We enumerate the rational integers in order of size (equivalently
absolute value, height or bit-size), alternating positive and negative values:

Z enumeration

0, 1,−1, 2,−2, 3,−3, 4,−4, 5,−5, 6,−6, 7,−7, 8,−8, 9,−9, 10,−10 . . .

If we can enumerate a ring R, we can also enumerate n-tuples in Rn:

(Zˆ2) enumeration

(0, 0), (0, 1), (1, 1), (1, 0), (0,−1), (1,−1), (−1,−1), (−1, 0), (−1, 1), (0, 2), (1, 2), (−1, 2), (2, 2), (2, 0) . . .

For enumerating the positive rationals we use the Calkin-Wilf sequence [CW00]:

q1 := 1; qi+1 := 1
2bqic − qi + 1

The enumeration of the full rationals simply adds 0, and after each positive rational qi adds −qi. The
Calkin-Wilf sequence enumerates the rationals in order of increasing height (or equivalently bit-size).

Q enumeration

0, 1,−1, 1/2,−1/2, 2,−2, 1/3,−1/3, 3/2,−3/2, 2/3,−2/3, 3,−3, 1/4,−1/4, 4/3,−4/3, 3/5,−3/5 . . .

For some rings we also implement enumeration of ideals, maximal ideals, prime ideals, primes, irreducibles,
etc. For example we enumerate the prime ideals of Z:

Z primeIdeals

0, 2Z, 3Z, 5Z, 7Z, 11Z, 13Z, 17Z, 19Z, 23Z, 29Z, 31Z, 37Z, 41Z, 43Z, 47Z, 53Z, 59Z, 61Z, 67Z, 71Z . . .

And the primes of the Gaussian integers Z[i]:

GaussianField new integers primes

1 + i, 1− i,−1− i,−1 + i, 2 + i, 2− i,−2 + i,−2− i, 3i, 1 + 3i,−1 + 3i, 2 + 3i,−2 + 3i, 3, 1− 3i,−1− 3i . . .

And we also support other messages from the Collection protocol, implemented as possibly infinite enumer-
ations:

Q select: [:x | x numerator odd]

1,−1, 1/2,−1/2, 1/3,−1/3, 3/2,−3/2, 3,−3, 1/4,−1/4, 3/5,−3/5, 5/2,−5/2, 5/3,−5/3, 3/4,−3/4, 1/5 . . .

Q collect: [:x | xˆ2]

0, 1, 1/4, 4, 1/9, 9/4, 4/9, 9, 1/16, 16/9, 9/25, 25/4, 4/25, 25/9, 9/16, 16, 1/25, 25/16, 16/49, 49/9, 9/64 . . .

We can also generate elements at random. This is straightforward when the carrier set is finite, and otherwise
it is usually possible to sample elements at random from a finite subset of elements of bounded size.

Example 2.2.2. (Generating elements at random). When the carrier set of an object A is finite, we can
sample elements uniformly at random using the message A atRandom:

(Z/4) atRandom
4For some notion of size, for example the number of bits required by their internal representation in the computer’s memory,

or possibly by other more intrinsic notions of size such as degree, arithmetic height, Euclidean length, etc.

3

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

2

(Z/2ˆ8) atRandom

01101011

(Z/12ˆ2) automorphisms atRandom[
1 0
7 5

]
But if the carrier set of A is not finite A atRandom cannot generate elements with a uniform distribution.
In that case, if we want to sample elements uniformly we need to specify a finite subset to sample elements
from, for example the subset of elements that can be stored in the computer memory with at most a given
number of bits, polynomials of at most a given degree, etc:

Z atRandomBits: 10

−410

(Z/4) polynomials atRandomMaxDegree: 5

2x4 + x2 + 1

3 Rings and Modules

We model the category of unital rings. We require rings to be associative, but not necessarily commutative.

In order to do anything with rings in a computer we need to at least be able to compute the basic arith-
metic operations of addition, multiplication, and additive inverse, as well as testing equality of elements (or
equivalently testing if an element is zero). Additionally, ring elements must implement:

• a lift: b answers x such that ax = b if such an x exists, and nil otherwise;
• a colift: b answers x such that xa = b if such an x exists, and nil otherwise.5

We implement left division b \ a and right division a / b in terms of lift and colift respectively, producing
an error when a solution doesn’t exist. The lift and colift operations also allow us to compute multiplicative
inverses and test if an element is a unit. Note that when a is a zero divisor ax = b and xa = b don’t have
unique solutions, and in that case the lift and colift operations can return any solution.

3.1 Involutive Rings

We say that a ring R is an involutive ring (or a ∗-ring) if it is equipped with an antiautomorphism ∗ : R→ R
that is also an involution: (ab)∗ = b∗a∗ and (a∗)∗ = a. In particular, commutative rings are involutive
with the trivial involution a∗ = a. Matrix algebras are also involutive with the involution given by matrix
transposition A∗ = Aᵀ.

Elements of involutive rings are expected to implement a opposite to answer a∗. This allows to implement
a colift: b in terms of the lift as (a opposite lift: b opposite) opposite.

3.2 Euclidean Rings

Following Samuel in [Sam71], we say that a commutative ring R is Euclidean if it is equipped with a function
ϕ : R→W to a well-ordered set W and an algorithm that given a, b ∈ R, b 6= 0 computes q, r with a = bq+r
and ϕ(r) < ϕ(b). With this definition a Euclidean ring is not required to be an integral domain (it can
contain nontrivial zero divisors), and thus it includes rings like Z/mZ, Z× Z and Galois rings.

Elements of Euclidean rings are expected to implement the following basic operations:

• a // b answers the quotient q of the Euclidean division a = bq + r with ϕ(r) < ϕ(b);
5The reason behind the names lift and colift will become clear in § 3.3 when we talk about computable rings.

4

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

• a gauge answers ϕ(a);
• a normalization answers a unit u such that au is a unique choice of associate;
• a annihilator answers a generator of the annihilator ideal Ann(a) = {x ∈ R : ax = 0}.

The remainder a \\ b of the Euclidean division is simply computed as a − (a // b · b).6 The lift and colift
operations are also implemented in terms of Euclidean division. And via the Euclidean algorithm, Euclidean
rings support the messages a gcd: b and a xgcd: b (that returns both the GCD and the Bézout coefficients).

In terms of the normalization we implement a normalized as a · a normalization. This gives us a unique choice
of associate for each element, generalizing the idea of taking absolute value of a rational integer, making a
polynomial monic or echelonizing a matrix. And in terms of the annihilator we implement also a isZeroDivisor
as a annihilator isZero not. Note also that if we have a method to generate elements of a ring R at random,
the normalization message allows us to generate elements of the group of units R× at random simply by
taking an element of R at random and returning its normalization unit.

Algorithms that work over Euclidean rings, such as algorithms for matrix normal forms and Gröbner bases,
are implemented in a most general form, allowing arbitrary rings as long as they have the required properties
and support the required basic operations.

3.3 Computable Rings

We say that a ring R is computable if there are algorithms for solving homogeneous and inhomogeneous
linear systems over R, which amounts to the following problems on matrices:

• syzygies problem: given a matrix A, find X such that AX = 0, and X is universal in the sense that
for any Y with AY = 0 there exists T with XT = Y ;

• lifting problem: given matrices A and B, decide whether there exists a matrix X such that AX = B,
and in the affirmative case construct such matrix.

In other words, the syzygies problem asks for a matrix X whose columns generate the module of syzygies
of the columns of A. And, identifying matrices acting on the left with homomorphisms of free modules, the
lifting problem asks for a lift of B along A making the following diagram commute:

Rm

R` Rn

A
X

B

In addition we define cosyzygies and colifting with the multiplication reversed, corresponding to the linear
systems XA = 0 and XA = B.

We implement the syzygies and lifting problems on matrices as messages A syzygies and A lift: B, and
cosyzygies and colifting as A cosyzygies and A colift: B. And in analogy with left and right division of ring
elements we implement B \ A and A / B for matrices in terms of lift and colift respectively, producing an
error when the solution doesn’t exist. Note that when the matrices belong to the algebraMn(R) of square
matrices over a commutative ring R, the lift, colift, left division and right division messages just defined on
matrices are consistent with their counterparts on ring elements.7

When the ring of coefficients is commutative we can compute A cosyzygies as A transpose syzygies transpose
and A colift: B as (A transpose lift: B transpose) transpose. More generally, over involutive rings we compute

6It’s unfortunate to have an apparent inconsistency between the message a \\ b which is standard in Smalltalk-80 for the
remainder of the Euclidean division, and the message b \ a introduced by us for left division. However, this is not really much
of a problem because we implement Euclidean division only in commutative rings, where we don’t need to distinguish between
left and right division and just use a / b.

7Moreover, when R is a PIR the syzygies message is equivalent to the annihilator, and when R is a PID the column echelon
transformation (that is, the unimodular matrix U such that AU is in column echelon form) is equivalent to the normalization
unit defined for ring elements.

5

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

cosyzygies as A opposite syzygies opposite and colift as (A opposite lift: B opposite) opposite, where the message
A opposite answers the conjugate transpose of A, i.e. the transpose of the matrix obtained by applying the
involution of R to each coefficient of A. Note that the ring Mn(R) of square matrices over an involutive
ring R is itself an involutive ring with A opposite as its involution.

It’s straightforward to solve linear systems over fields using Gaussian elimination. Over Euclidean domains
we can solve linear systems using the Hermite normal form.8 And over general Euclidean rings we can solve
linear systems using the Howell normal form (see [How86], [SM98] and [Sto00]). Thus, Euclidean rings are
computable.

Furthermore, computability turns out to be a very stable property, preserved by products, quotients, local-
izations and finite extensions. In the following sections we will elaborate on some of these constructions.

3.4 Modules

Given a ring R, we would like to construct ideals of R, and more generally R-modules. For this, we implement
(unital) finitely presented right R-modules.9 Objects and morphisms in the category of finitely presented
R-modules can be internally represented as matrices with coefficients in R. More precisely, we represent
a module M with a relations matrix A and a generator matrix B corresponding to the arrows of a free
presentation Rm

A→ Rn
B→ M → 0. And if we have another module N given by a presentation Rm

′ →
Rn

′ → N → 0, we represent a module homomorphism M → N with a n′ × n matrix (we identify matrices
with homomorphisms between free modules of the form Rn, and more general module homomorphisms
are internally represented by a matrix that depends on the choice of presentations). For details on these
constructions see [GP07], [BR08], [BLH11].

Many computations that one would want to do with finitely presented R-modules and their homomorphisms
can be reduced to solving linear systems over R.10 In particular, if R is computable, all the abelian category
axioms for finitely presented R-modules are constructive, as established by Barakat and Lange-Hegermann
in [BLH11], and this means we can develop effective homological algebra on them.

Example 3.4.1. (Free modules, tuples, matrices). We implement free modules Rn as modules of n-tuples
with the canonical basis:

(Zˆ3) basis

((1, 0, 0), (0, 1, 0), (0, 0, 1))

We identify homomorphisms of free modules with matrices acting on the left on tuples. When R is commu-
tative we implement Hom(Rn, Rm) as the R-module of m× n matrices:

Zˆ3 ⇒ (Zˆ2)

Z2×3

Zˆ3 ⇒ (Zˆ2) ! #(1 2 3 4 5 6)[
1 2 3
4 5 6

]
Now, if we want the unique module homomorphism from the trivial module Z0 to Z3 we can simply do:

Zˆ0 → (Zˆ3)

0

8For efficiency we use specialized algorithms in some cases, for example over Z we use Dixon’s p-adic expansion method
[Dix82].

9We don’t need to implement left modules explicitly, as they are equivalent to right modules over the opposite ring. In
particular, when R is an involutive ring, Rop can be identified with R via the involution.

10One important problem that cannot be reduced to solving linear systems is the module isomorphism problem: given two
R-modules, decide whether they are isomorphic and produce an isomorphism. This can be solved in some rings using matrix
normal forms, and there are other techniques for when R is a finite-dimensional algebra.

6

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

This is printed as 0 because its a zero morphism, but it is actually a 3× 0 matrix.

Moreover, we identify the direct sum of free modules Rn ⊕Rm with the free module Rn+m.

Zˆ2 ⊕ (Zˆ3)

Z5

In order for this identification to make sense, we ensure that Rn+m is always equipped with the corresponding
projections and coprojections, for example:

Zˆ5 ⇒ {Zˆ2. Zˆ3}([
1 0 0 0 0
0 1 0 0 0

]
,

[0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

])
The message A ⊕ B applied to matrices A and B answers the block-diagonal matrix with A on the top-left
and B on the bottom-right. When seeing the matrices as homomorphisms of free modules, this matches the
direct sum of homomorphisms.

And we also have messages A u B to get the matrix whose rows are the rows of A followed by the rows
of B, and A t B to get the matrix whose columns are the columns of A followed by the columns of B.
These messages are implemented also for general module homomorphisms, and correspond to the product
and coproduct morphisms in additive categories [BLH11, § 2 (8), (9)].

Example 3.4.2. (Finitely generated abelian groups). Abelian groups are the same as Z-modules. To be
precise, there is not only an equivalence of categories but also an isomorphism of categories, so they are the
same in the strongest sense. At the level of Smalltalk this manifests naturally as polymorphism and allows
us to identify finitely generated abelian groups with finitely generated Z-modules. More concretely, this
means that group homomorphisms can have Z-modules as domain or codomain and can be composed with
homomorphisms of Z-modules.

We can construct Z-modules from other commutative groups. For example here we construct a Z-module
from a permutation group. We use the message A sub: aSet to create the subobject of A generated by a set
of elements, in particular here we create a subgroup of S6 generated by a permutation given by images: the
permutation that sends 1 to 6, 2 to 1, 3 to 2, etc. Note that permutations are printed as a product of cycles,
in this case just one cycle (4 3 2 1 6 5):

S := SymmetricGroup new: 6

S6

H := S sub: {#(6 1 2 3 4 5)}

〈(4 3 2 1 6 5)〉

G := H asAbelianGroup

Z2/〈(2, 0); (0, 3)〉

G isCyclic

true

G isTorsion

true

Here we create an abelian group from a product of rings:

G := (Z × (Z/3) × (Z/5) × (Z/12)) asAbelianGroup

Z4/〈(0, 3, 0, 0); (0, 0, 5, 0); (0, 0, 0, 12)〉

G invariants

7

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

(0, 3, 60)

G primaryInvariants

{0, 5, 4, 32}

G torsion

Z2/〈(3, 0); (0, 60)〉

G torsion exponent

60

Example 3.4.3. (Pullbacks and pushouts). We implement pullback and pushout of module homomorphisms
with the messages f ∧ g and f ∨ g. Given two morphisms f : X → Z and g : Y → Z, the pullback f ∧ g is an
object P and two morphisms π1 : P → X and π2 : P → Y such that the following diagram commutes:11

P

X Y

Z

π1 π2

f g

and it is universal with respect to this diagram, meaning that for any other such P ′, π′1 and π′2, there exists
a unique u : P ′ → P such that π1 ◦ u = π′1 and π2 ◦ u = π′2.

We compute P as (f t g negated) kernel, and equip it with the two projections. (The pushout is dual to the
pullback, it’s the same with the arrows reversed and cokernel instead of kernel.)

Here we show how we use the pullback to compute intersection of submodules. First we construct two
submodules S, T ⊂ Z3 with nontrivial intersection.

M := Zˆ3.
a := M atRandom

(−5, 5,−1)

S := M sub: {M atRandom. a}

〈(1, 1, 0); (0, 10,−1)〉

T := M sub: {M atRandom. a}

〈(5,−5, 0); (0, 0, 1)〉

Then we compute the intersection S ∩ T as a pullback. We take the inclusions of the two submodules into
their ambient module, compute their pullback, and then return the image of any of the projections π1 or π2
(of course we also have the message S ∩ T that does exactly this):

((S → M) ∧ (T → M) ⇒ {S. T}) anyone image

〈(5,−5, 1)〉

This ends up performing a computation similar to the Zassenhaus algorithm [Zas66], but we express it in
an abstract and more general form without any mention of elements, coefficients or matrices. Note that,
although in this example we worked with submodules of a free Z-module for simplicity, this works for finitely
presented modules over any computable ring.

11There are several different notations for the pullback and the pushout. We particularly like the symbol ∧ for the pullback
because it matches the upper part of the pullback diagram, i.e. the output of the message f ∧ g. Similarly, if we write arrows
going down, the symbol ∨ matches the lower part of the pushout diagram, i.e. the output of the message f ∨ g.

8

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Example 3.4.4. (Betti numbers of the Klein bottle). Once we have constructed modules as abelian cate-
gories, we can construct chain complexes of modules and compute homology. We use this to compute the
Betti numbers of the Klein bottle.

First we build a simplicial complex from a minimal triangulation of the Klein bottle:
X := SimplicialComplex facets: #(

(2 3 7) (1 2 3) (1 3 5) (1 5 7)
(1 4 7) (2 4 6) (1 2 6) (1 6 0)
(1 4 0) (2 4 0) (3 4 7) (3 4 6)
(3 5 6) (5 6 0) (2 5 0) (2 5 7))

Then we construct its chain complex over Z:

C := X chainComplexOver: Z

0← Z8 ← Z24 ← Z16 ← 0

And then we compute the Betti numbers of the chain complex (that is, the ranks of the homology groups):

C betti

(1, 1, 0)

3.5 Product Rings

Given rings R1, . . . , Rn, the direct product ring R := R1 × · · · × Rn can be constructed as the set of tuples
(r1, . . . , rn) with ri ∈ Ri and multiplication and addition defined component-wise. The product ring R
comes equipped with projections πi : R→ Ri, and a composition function that takes a list of elements of the
components ri ∈ Ri to an element of the product R.

We can solve linear systems over R by projecting to the components Ri, solving the projected systems
separately, and then composing the solutions back to obtain solutions over R.

Note that if all the components Ri are Euclidean, then the product ring R is also Euclidean [Sam71,
Proposition 6], and in that case we could alternatively solve linear systems by means of the Howell normal
form.
Example 3.5.1. (Chinese remainder theorem). We can decompose Z/mZ as a product of local rings
Z/pe1

1 Z× · · · × Z/pe`

` Z, where m = pe1
1 · · · p

e`

` is the prime factorization of m.

R := Z/60

Z/60Z

P := R decomposition

F5 × F3 × Z/22Z

When we construct this product ring we equip it with ring homomorphisms that allow coercion of elements
in both directions.

a := R atRandom

33

b := P ! a

(3, 0, 1)

R ! b

33

Example 3.5.2. (A finite ring). We perform some basic computations with the finite ring Z/4Z× Z/4Z.

R := Z/4 × (Z/4)

9

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Z/22Z× Z/22Z

The ring has 16 elements (12 zero divisors and 4 units):

R zeroDivisors asSet

{10, 12, 30, 32, 00, 01, 02, 20, 03, 21, 22, 23}

R units asSet

{31, 13, 33, 11}

The Jacobson radical is nontrivial:

R radical

〈22〉

The ring contains two maximal ideals, so it is not a local ring:

R maximalIdeals

{〈12〉, 〈21〉}

And it contains three nonzero nilpotents:

R nilradical asSet

{00, 22, 20, 02}

3.6 Quotient Rings

Given a commutative ring R and a finitely generated ideal I, we construct the quotient ring R/I equipped
with the canonical projection π : R→ R/I.

An element ā of the quotient ring R/I is a residue class and can be represented internally as an element
a ∈ R (a representative of the residue class ā = a+ I), defining equality as ā = b̄⇐⇒ a− b ∈ I.

Linear systems over R/I can be reduced to linear systems over R. Suppose I = 〈f1, . . . , f`〉. For solving the
syzygies problem ĀX̄ = 0 over R/I we construct the matrix A whose coefficients are representatives of the
coefficients of Ā and solve the following system over R:A f1

. . .
f1

· · ·
f`

. . .
f`

X = 0

If Ā has n rows, the solution X̄ we’re looking for is the matrix whose coefficients are the projections to R/I
of the coefficients of the first n rows of X. And we solve the lifting problem ĀX̄ = B̄ in exactly the same
way, by reducing to a lifting problem over R.

As with product rings, it is worth noting that quotients of Euclidean rings are also Euclidean, so when R is
Euclidean we could alternatively solve linear systems over R/I by means of the Howell normal form.

In the case that R/I is known to be a field (that is, I is known to be a maximal ideal), we can solve linear
systems over R/I with Gaussian elimination. We do this in fact when R/I = Z/pZ.

Example 3.6.1. (Modular integers). The ring Z/mZ of residue classes of integers modulo m is an example
of a quotient ring. When m is a power of a prime p we have the local ring Z/pkZ with maximal ideal 〈p〉,
and when k = 1 the prime field Fp = Z/pZ.

Z/12

Z/12Z

Z/16

10

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Z/24Z

Z/17

F17

When n divides m we have a canonical ring homomorphism Z/mZ→ Z/nZ. In particular, we have canonical
homomorphisms πi : Z/pkZ→ Z/piZ for all 1 ≤ i ≤ k.

Z/16 → (Z/8)

π : Z/24Z→ Z/23Z

This allows us to form a projective system:

Fp ← Z/p2Z← Z/p3Z← · · ·

The p-adic integers Zp are the inverse limit of this system, and we have projections πk : Zp → Z/pkZ for
each k ≥ 1.

As other computer algebra systems, we implement p-adic integers Zp as approximations with fixed precision.
However, this is not rigorous enough because completions like Zp are not really computable (we can’t even
test elements for equality). A more rigorous alternative is to work explicitly in a prime power ring Z/pkZ
for a big enough k.12 That’s one of the reasons why the rings Z/pkZ are of computational importance and
we distinguish them from the more general rings Z/mZ. Another important application of Z/pkZ is the
construction of Galois rings (see Example 3.8.1).

Example 3.6.2. (Linear codes). Other interesting objects we can construct from modules are linear codes.
Originally linear codes were considered mostly over fields, but in the early 1990s Hammons et al. [HKC+94]
discovered that several remarkable nonlinear binary codes are actually linear codes over Z/4Z, and linear
codes over finite rings quickly became a hot topic in coding theory. This discovery also sparkled a resurgence
of interest in Galois rings (see Example 3.8.1).

This is the octacode O8 over Z/4Z [Wan97, Example 1.3].
M := Z/4ˆ8 sub: #(

(1 0 0 0 3 1 2 1)
(0 1 0 0 1 2 3 1)
(0 0 1 0 3 3 3 2)
(0 0 0 1 2 3 1 1))

〈10003121; 01001231; 00103332; 00012311〉

C := M asLinearCode

[8, 4, 4]4

This code has 256 codewords, minimum Hamming distance 4, and it is self-dual:

C size

256

C minimumDistance

4

C = C dual

true

(See Example 3.8.6 for a linear code over a noncommutative ring.)

12Similarly, instead of working with the power series ring RJx1, . . . , xnK, we can work in R[x1, . . . , xn]/〈x1, . . . , xn〉k for a big
enough k.

11

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

3.7 Localizations

Given a commutative ring R and a multiplicatively closed subset S ⊂ R we can construct S−1R, the
localization of R at S. The elements of this ring are pairs (a, b) noted as fractions a/b with a ∈ R and b ∈ S,
with equality defined as a/b = c/d ⇐⇒ (ad − cb)s = 0 for some s ∈ S. This construction comes equipped
with the localization morphism that sends an element a ∈ R to a/1.

One important type of localization is the localization at a prime ideal. Given a prime ideal p of R, we set
S := R \ p and define the localization of R at p as Rp := S−1R. This is a local ring and its maximal ideal is
pRp (the extension of p by the localization map).

We also construct Frac(R), the total ring of fractions of R, as the localization at the multiplicative set
consisting of all the regular elements of R (that is, elements that are not zero divisors). The elements of
Frac(R) are fractions a/b with a, b ∈ R and b regular. When R is an integral domain Frac(R) is a field, and
there’s also a canonical morphism from Rp to Frac(R).13

Conditions for the computability of general localizations S−1R were established by Posur in [Pos18]. In
particular, linear systems over Rp and Frac(R) can be reduced to linear systems over R.

Note that with this approach we can compute in localizations of affine algebras without having to deal with
standard bases and local monomial orderings. See § 3.8.1 for more details.

As with products and quotients, localizations of Euclidean rings are also Euclidean [Sam71, Proposition 7],
so when R is Euclidean we could alternatively solve linear systems over localizations S−1R by means of
the Howell normal form. And when R is an integral domain Frac(R) is a field and we can also solve linear
systems over Frac(R) with Gaussian elimination (although in general this is very inefficient).

Example 3.7.1. (Localizations of Z and Q[x]). The total ring of fractions of Z is Q:

Z fractions

Q

Localizations of Dedekind domains at nontrivial prime ideals are discrete valuation rings (that is, local PIDs
that are not fields).

p := Z · 5.
L := Z @ p

Z〈5〉

L maximalIdeal

〈5〉

The elements of Z〈5〉 are reduced fractions a/b where b is not multiple of 5, and the maximum power of 5
that divides a is the valuation of a/b:

a := L ! (50 / 29).
a valuation

2

Moreover, we have unique factorization:

a factorization

{52}

Similarly for Q[x]:
R := Q polynomials.
R fractions

13For both constructions Rp and Frac(R) we require R to have a GCD algorithm that we use to automatically reduce
numerators and denominators, otherwise computations can quickly become impractical.

12

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Q(x)

x := R x.
p := R · (xˆ2 + 1).
L := R @ p

Q[x]〈x2+1〉

f := L ! ((xˆ2 + 1)ˆ3 · (x - 2)) / (L ! (xˆ2 + x))

(x7 − 2x6 + 3x5 − 6x4 + 3x3 − 6x2 + x− 2)/(x2 + x)

f valuation

3

f factorization

{(x2 + 1)3}

Example 3.7.2. (Localizations of finite rings). We don’t need to construct all localizations explicitly as
rings of formal fractions. Localizations of Z/mZ are isomorphic to Z/nZ for some n dividing m, and in this
case the localization map is (and cannot be other than) the canonical projection Z/mZ → Z/nZ, which is
not injective unless n = m.

R := Z/60.
p := R · 3.
R @ p

F3

p := R · 2.
L := R @ p

Z/22Z

We see that the localization map takes every element not in p to a unit in Rp:

ϕ := R → L

a RingMap : Z/60Z→ Z/22Z

R allSatisfy: [:x | x ∈ p or: [(ϕ value: x) isUnit]]

true

Moreover, since in a finite ring R an element is either a unit or a zero divisor, the total ring of fractions
Frac(R) is R itself:

R fractions

Z/60Z

3.8 Algebras

Given a commutative ring R, we construct some subcategories of R-algebras. We require them to be asso-
ciative and unital so they are also rings (under our definition of ring). We have R-algebra homomorphisms
between them, and since we’re viewing them in the category of rings we also allow ring homomorphisms that
are not necessarily R-algebra homomorphisms.

R-algebras come equipped with the inclusion ring homomorphism from R.

3.8.1 Affine Algebras

We refer to polynomial rings and their quotients as affine algebras because they are the coordinate rings of
affine varieties. Any finitely generated commutative associative algebra is isomorphic to an affine algebra.

13

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

We construct a polynomial ring R[x1, . . . , xn] from a commutative ring R and the free abelian monoid
[x1, . . . , xn]∗ consisting of monomials xe1

1 · · ·xen
n . The monoid comes equipped with an ordering that is used

when computing Gröbner bases. Polynomials are simply finite formal linear combinations of monomials with
coefficients in R. This construction is a particular case of a monoid algebra.

As we saw in § 3.6, we can reduce linear systems over an affine algebra R[x1, . . . , xn]/I to linear systems over
the polynomial ring R[x1, . . . , xn]. And linear systems over a polynomial ring R[x1, . . . , xn] can be solved
using Gröbner bases techniques. We implement a generalization of Buchberger’s algorithm that computes
strong Gröbner bases over R[x1, . . . , xn] for any Euclidean ring R (possibly with nontrivial zero divisors),
based on [EPP21] and [EH21].

In addition to Gröbner bases with global monomial orderings, the algorithm can also compute standard
bases with local monomial orderings using Mora’s normal form [Mor82; Mor91]. This is the classic approach
to compute in localizations of affine algebras [GP07, Example 1.5.3 (4)]; but instead of doing that we reduce
to linear systems over the affine algebra as explained in § 3.7, which bypasses completely the need to work
with Mora’s normal form and local monomial orderings and seems to be more efficient [BLH11, § 4.4] [Pos18,
Construction 4.3].

Example 3.8.1. (Galois rings). We construct number fields, function fields, Galois rings and Galois fields as
affine algebras. For example, we construct the Galois field Fpr as the quotient Fp[x]/〈f〉 for some irreducible
monic polynomial f ∈ Fp[x] of degree r.

F := GaloisField new: 3 to: 2

F32

We see that in this case F32 was constructed as F3[x]/〈x2 − x− 1〉:

F cover

F3[x]

F relations

〈x2 − x− 1〉

More generally, we construct the Galois ring GR(pk, r) of characteristic pk and order pkr as the quotient
Z/pkZ[x]/〈f〉 for a monic polynomial f ∈ Z/pkZ[x] of degree r such that the reduction of f modulo p is
irreducible in Fp[x]. When k = 1 this is just the Galois field Fpr . Galois rings have very nice properties,
for example they are local rings with maximal ideal 〈p〉 (which is also the set of zero divisors), and they are
Euclidean rings. For details on Galois rings see [GM73], [McD74] and [BF02].

R := GaloisRing new: 3 to: 3 to: 2

GR(33, 2)

The ideals of GR(pk, r) are of the form 〈pi〉 for 0 ≤ i ≤ k and form a chain 〈pi+1〉 ⊂ 〈pi〉.

R ideals

0,GR(33, 2), 〈3〉, 〈9〉

And given GR(pk, r), there’s a canonical projection to GR(p`, r) for all ` ≤ k with kernel 〈p`〉. This accounts
for all ideals.

S := GaloisRing new: 3 to: 2 to: 2

GR(32, 2)

(R → S) kernel

〈9〉

(R → F) kernel

14

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

〈3〉

The generalization from Galois fields to Galois rings was very easy to implement, and thinking of Galois
fields Fpr and prime power rings Z/pkZ uniformly as special cases of Galois rings made much of our code
simpler (see for example how we treat Galois fields and Galois rings uniformly at the lowest level in § 4).

Example 3.8.2. (An affine curve). We can construct closed subschemes of affine or projective space. Here’s
a simple example with an affine plane curve.

P := Q polynomialsIn: #(x y).
x := P x: 1. y := P x: 2.
R := P / (xˆ2 + (xˆ3) - (yˆ2)).
X := R spec

Spec Q[x, y]/〈x3 + x2 − y2〉

The following figure shows the curve x3 + x2 − y2 = 0 in blue, and the tangent cone x = y and x = −y in
red:

As we see in the figure, this curve is singular at the origin:
p := X ! (0,0).
p isSingular

true

The tangent cone at the origin is the union of the two lines x = y and x = −y, and the tangent space is the
whole plane:

p tangentCone

Spec Q[x, y]/〈x2 − y2〉

p tangentSpace

A2(Q)

Example 3.8.3. (Projective lines over finite rings). Following [SPKP07, § 2], we explore the projective line
over Z/4Z× Z/4Z.

R := Z/4 × (Z/4).
P := (R polynomialsIn: 2) proj

P(Z/22Z× Z/22Z)

We see that the line has 36 rational points:
S := P points asSet.
S size

36

15

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

We partition points in two distinct groups: type I when at least one of the coordinates is a unit, and type
II when both coordinates are zero divisors. We see that there are 28 points of type I:

S count: [:p | p coordinates anySatisfy: [:any | any isUnit]]

28

For any finite commutative ring, the number of points of type I is always equal to the sum of the order of
the ring plus the number of zero divisors:

R size + R zeroDivisors size

28

Moreover, we say that two points [a:b] and [c:d] are neighbors or parallel, and note it [a:b] ‖ [c:d], if ad− cb
is not a unit. We say that two points are distant if they are not neighbors, and we call neighborhood the set
of all neighbors of a given point.

We take 3 pairwise distant points and compute their neighborhoods:
u := P points ! #(1 0).
v := P points ! #(0 1).
w := P points ! #(1 1).
Nu := S select: [:x | x ‖ u]

{[12:01], [11:21], [11:22], [11:23], [11:30], [11:32], [12:21], [21:10], [21:12], [01:10],
[01:12], [10:01], [10:21], [11:00], [11:01], [11:02], [11:03], [11:10], [11:12], [11:20]}

Nv := S select: [:x | x ‖ v]

{[21:10], [12:01], [12:11], [12:21], [12:31], [20:11], [21:11], [21:12], [21:13], [22:11],
[00:11], [01:10], [01:11], [01:12], [01:13], [02:11], [10:01], [10:11], [10:21], [10:31]}

Nw := S select: [:x | x ‖ w]

{[11:33], [11:21], [11:23], [11:30], [11:31], [11:32], [12:11], [12:31], [21:11], [21:13],
[01:11], [01:13], [10:11], [10:31], [11:01], [11:03], [11:10], [11:11], [11:12], [11:13]}

We see that each neighborhood contains 20 points, their triple intersection is empty, and the pairwise
intersections contain 8 points each. We also see that each neighborhood contains 4 Jacobson points (that is,
points unique to that particular neighborhood).

The following is a schematic sketch of the structure of P(Z/4Z× Z/4Z) taken from [SPKP07].

Each small circle or bullet represents two distinct points. The three double circles represent the pairwise
distant points u, v and w, and their neighborhoods are represented by ellipses centered on each one of them.
The three white circles represent Jacobson points.

Example 3.8.4. (Hilbert series). We can compute Hilbert series of affine algebras. First we compute the
Hilbert series of Q[x, y, z, w]:

R := Q polynomialsIn: #(x y z w).
H := R hilbertSeries

16

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

1/(1− 4t+ 6t2 − 4t3 + t4)

If we factorize the denominator we see that H = (1− t)−4:

H denominator factorization

{(t− 1)4}

Now we look at a quotient of this polynomial ring.
x := R x: 1. y := R x: 2. z := R x: 3. w := R x: 4.
f1 := x·z - (yˆ2).
f2 := x·w - (y·z).
f3 := y·w - (zˆ2).
I := R · {f1. f2. f3}.

〈y2 − xz, yz − xw, z2 − yw〉

H := (R/I) hilbertSeries

(1 + 2t)/(1− 2t+ t2)

The order of the pole at 1 is the Krull dimension of R/I:

(H orderAt: 1) negated

2

And we see that in fact it matches the Krull dimension, which is computed by other means:

(R/I) dimension

2

3.8.2 Finite Algebras

Given a finitely generated R-module over a commutative ring R, we can construct an R-algebra by explicitly
giving a bilinear map that defines the multiplication. This is called a finite R-algebra, or a finite-dimensional
R-algebra if R is a field.

We model the associative unital case in the category of rings, and the general case (not necessarily associative
or unital, such as Lie algebras and octonions) in a separate category of distributive algebras.

Some examples of finite associative R-algebras currently implemented include rings of integers of number
fields, Clifford algebras, quaternion algebras, group algebras of (very) finite groups, and algebras of module
endomorphisms (in particular matrix algebras). Also we can construct all finite rings as finite Z-algebras
with a finite abelian group as underlying module [CT16].

Solving linear systems over a finite R-algebra can be reduced to solving linear systems over R via the regular
representation. And in the particular case that the finite algebra is a division ring, we can also solve linear
systems by Gaussian elimination, since the Gaussian elimination algorithm doesn’t require the coefficients
ring to be commutative.

Example 3.8.5. (Quaternion algebras). We implement the quaternion algebra Ha,b(R) over a commutative
ring R as a finite R-algebra with underlying module R4 and basis {1, i, j, k}, with multiplication defined
such that i2 = a, j2 = b and ij = −ji = k, where a and b are units of R (the invariants of the quaternion
algebra).

H := QuaternionAlgebra over: Z invariants: #(1 1)

H1,1(Z)

H basis

(1, i, j, k)

17

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

We can coerce elements between the algebra and its underlying module:

a := H atRandom

1− i− j − 4k

H asModule ! a

(1,−1,−1,−4)

We can compute the (left) regular representation map of a, i.e. the module endomorphism that sends
the module element corresponding to x to the module element corresponding to ax (we have the message
a representation to do this, but here we are explicit for illustrative purposes):

A := H asModule endomorphisms map: [:x | H asModule ! (a · (H ! x))] 1 −1 −1 4
−1 1 −4 1
−1 4 1 −1
−4 1 −1 1

We generate another element at random and take its coordinates:

b := H atRandom

1 + j + 2k

v := H asModule ! b

(1, 0, 1, 2)

And we see that the coordinates of ab are given by Av:

A · v

(8,−3,−2,−3)

a · b

8− 3i− 2j − 3k

The regular representation is fundamental for many computations with finite algebras. For example we use
it to compute lift, annihilator, characteristic and minimal polynomials, norm, trace, and to reduce linear
systems over a finite R-algebra to linear systems over R.

Example 3.8.6. (Linear codes over noncommutative rings). Linear codes can also be constructed over
noncommutative rings. Here we construct the linear 3-quasi-cyclic rate-2/6 block code over H(F3) [TS21,
Example 1].

H := QuaternionAlgebra over: Z/3 invariants: #(-1 -1)

H(F3)

i := H i.
M := Hˆ6 sub: {{1. 1. i. i. 1+i. 1+i}. {i. 1+i. 1+i. 1. 1. i}}.
C := M asLinearCode

[6, 2, 5]81

This code has 6561 codewords and minimum Hamming distance 5:

C size

6561

C minimumDistance

5

18

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

And we also compute its Hamming weight enumerator:

C weightEnumerator

x6 + 480xy5 + 6080y6

Example 3.8.7. (Number rings). The rings of integers of number fields are finitely generated Z-modules,
so we can construct them as finite algebras. For this we require an algorithm for computing an integral basis,
currently implemented only for cyclotomic and quadratic fields.

We create the 5th cyclotomic field and its ring of integers:

F := CyclotomicField new: 5

Q(ζ5)

R := F integers

Z[ζ5]

The underlying module of Z[ζ5] is Z4. The integral basis is formed by powers of ζ5, so elements of Z[ζ5] are
internally represented as Z-linear combinations of powers of ζ5:

R basis

(1, ζ5, ζ
2
5 , ζ

3
5)

Now say we want to compute units of R at random. (This is far from efficient, but it serves to illustrate
some of the functionality currently available in the system.) We look for a polynomial in F whose roots,
if any, are units in R. We want the roots to be algebraic integers, so we make it monic with rational
integer coefficients. And, because an algebraic integer is a unit if and only if its norm is a unit, we need the
independent coefficient to be a unit of Z (1 or −1).

P := Z polynomials.
x := P x.
[f := P atRandomMaxDegree: 3.
f := xˆ5 + (f · x) + Z units atRandom.
(roots := f rootsIn: F) isEmpty] whileTrue

We found the following units:

roots

{−ζ3
5 − ζ2

5 − 1, ζ3
5 + ζ2

5}

We take any of the roots and coerce it to the ring of integers:

u := R ! roots atRandom

−ζ3
5 − ζ2

5 − 1

Example 3.8.8. (Zero-dimensional affine algebras). We construct number fields, function fields and Galois
fields as quotients of polynomial rings. However, since they are finite-dimensional vector spaces, we can
construct them as finite algebras too.

A := GaussianField new

Q(i)

Although A prints as Q(i), it is actually the affine algebra Q[x]/〈x2 + 1〉.

F := A asFiniteAlgebra

Q2

This prints as Q2 but it’s not really a vector space, it is a finite algebra with underlying vector space Q2,
equipped with maps that allow coercion of elements from and to the affine algebra A. While elements of

19

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

A are residues of polynomials modulo x2 + 1, elements of F are represented internally as vectors of the
underlying vector space Q2.

In general, from any zero-dimensional (that is, of Krull dimension 0) affine algebra over a field we can
construct an isomorphic finite algebra.

4 Implementation Details and Performance Considerations

Tuples, matrices and univariate polynomials, often over small prime fields Fp, lie at the bottom of most
computations. It is desirable to optimize basic operations with these objects because they lead to performance
improvements on the whole system.

Dense tuples,14 matrices and univariate polynomials are internally represented as arrays of coefficients, and
delegate basic operations to their arrays. We have a single implementation of tuples, matrices and univariate
polynomials independent of the coefficient ring, and different implementations of arrays for different types of
coefficient rings. This design enables low-level optimizations without impacting or limiting the mathematical
expressiveness of the system.

The basic operations implemented in arrays include addition, product by a scalar, addition times a scalar
(axpy), dot product, Hadamard product, convolution (univariate polynomial multiplication), matrix-tuple
multiplication and matrix-matrix multiplication. The polynomial multiplication and matrix-matrix multi-
plication algorithms implemented in arrays serve as base cases for asymptotically faster algorithms, such as
Karatsuba polynomial multiplication and Strassen-Winograd matrix multiplication, that are implemented
at a higher level of abstraction.

Although we support Z/mZ for arbitrarily large m, when m is small we use specialized arrays that store
elements in a memory-efficient way. For m = 2, we store each element as a single bit in an array of 32-bit
words. In this way, a polynomial of degree n in F2[x] or a tuple in Fn2 use only about n bits of memory,
and a dense n × m matrix over F2 uses about nm bits of memory. Basic operations with arrays over F2
reduce to bit operations on 32-bit words and are very efficient. Furthermore, as a base case for matrix-matrix
multiplication, arrays over F2 implement the Method of the Four Russians [ABH10, § 3] with complexity
O(n3/logn).

Arrays over F3 are stored in bitsliced form: an array over F3 uses two arrays of bits (bitslices), and stores
each element in 2 bits (one in each slice). Basic operations on arrays over F3 are implemented in terms of
bit operations on the bitslices [BB09, § 4.1].

For other Z/mZ with m ≤ 256, m ≤ 216 and m ≤ 232 we store elements as bytes, 16-bit and 32-bit words
respectively. In a 64-bit computer this is very efficient, since all arithmetic operations modulom ≤ 232 can be
performed in 64-bit registers without overflow. Polynomial multiplication over general Z/mZ is implemented
with Kronecker substitution [VZGG13, § 8.4], taking advantage of fast arithmetic with arbitrarily large
integers native to Smalltalk.

Arrays over product rings R1 × · · · × Rn are stored as arrays of arrays over the components Ri, inheriting
optimizations implemented for arrays over the component rings. Basic operations are directly delegated to
the components.15

And arrays over extension rings R[x]/〈f〉 with f monic are stored as arrays over the base ring R either in
packed or sliced form. An array of size n over R[x]/〈f〉 with f of degree r is represented in packed form as
an array of size nr over R, and each element is stored as r consecutive elements of the base ring, while in
sliced form it is represented as r arrays (slices) of size n over R and each element is split in the r distinct
slices. Both representations benefit from optimizations for arrays over the base ring R. In particular, arrays
over Galois rings GR(pk, r) are stored as arrays over Z/pkZ, and arrays over Galois fields Fpr = GR(p, r)

14Here we use the names array and tuple to refer to two different types of objects. An array is a fixed-size Smalltalk collection
indexed by integers (a subclass of ArrayedCollection), while a tuple is an element of a free module Rn.

15Since computations in the components are independent of each other, arrays over product rings are easily parallelizable.
The Smalltalk we are using doesn’t support parallel processing, but we hope to be able to experiment with parallelism in the
future.

20

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

are stored as arrays over the base prime field Fp = Z/pZ. For F2r with r < 8 in bitsliced form we use short
Karatsuba-like formulas to reduce all multiplicative operations to operations over F2. Matrix multiplication
can be implemented in terms of matrix multiplication over the base ring [BB09, § 4.3], and over F2r we get
O(n3/logn) matrix multiplication from F2.

It’s worth emphasizing that these optimized arrays don’t store elements directly but instead represent el-
ements in memory as bits, bytes, 16-bit or 32-bit words, and basic operations are performed in raw data
without ever instantiating Smalltalk objects for individual elements. This approach not only saves memory
and enables the possibility of extending the Smalltalk virtual machine with high-performance primitives
(implemented in C or assembly, for example), but also, by limiting the instantiation of Smalltalk objects,
allows large computations without stressing the garbage collector.

5 Availability

The project is open source and it is available at https://github.com/len/arrows. The code is well docu-
mented and includes references to relevant bibliography.

6 Future Work

During the first stage of development we focused on building general and mathematically rigorous founda-
tions. In the following stage we plan to focus on improving performance and adding functionality.

We plan to extend the functionality of number fields, function fields and their orders, affine and finite algebras,
schemes, permutation groups and linear groups. And we’d like to extend the computation of Gröbner bases
to some noncommutative algebras, starting with algebras of solvable type [GP07, § 1.9] that include Weyl
algebras, exterior algebras, and instances of quantum groups.

Furthermore, we plan to continue developing the machinery of homological algebra in terms of constructive
category theory [Pos19]. We hope that this process will drive improvements in our notation, and the language
introduced with these abstractions might help simplify and generalize other parts of the system.

7 Acknowledgements

We want to thank Leandro Caniglia for his continuous encouragement and advice, and for the suggestion
to use standard LaTeX commands to input special Unicode characters; and Juan Vuletich, not only for
making Cuis Smalltalk, but specially for his heroic work on TrueType fonts and Unicode support in Cuis
that enabled the use mathematical notation in Smalltalk code.

We also want to express our gratitude to the FAST 2022 Workshop organizers for the opportunity to par-
ticipate, and the anonymous reviewers for their corrections and very helpful suggestions.

References
[ABH10] Martin Albrecht, Gregory Bard, and William Hart. Algorithm 898: Efficient multiplication of

dense matrices over GF(2). ACM Transactions on Mathematical Software, 37(1):1–14, jan 2010.

[BB09] Tomas J. Boothby and Robert W. Bradshaw. Bitslicing and the Method of Four Russians over
larger finite fields, 2009.

[BF02] Gilberto Bini and Flaminio Flamini. Finite commutative rings and their applications, volume 680.
Springer Science & Business Media, 2002.

[BLH11] Mohamed Barakat and Markus Lange-Hegermann. An axiomatic setup for algorithmic homolog-
ical algebra and an alternative approach to localization. Journal of Algebra and Its Applications,
10(02):269–293, apr 2011.

21

https://github.com/len/arrows

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

[BR08] Mohamed Barakat and Daniel Robertz. Homalg – a meta-package for homological algebra. Journal
of Algebra and Its Applications, 07(03):299–317, jun 2008.

[CB22] Leandro Caniglia and Javier Burroni. On possible extensions to the Smalltalk syntax. In FAST
Workshop 2022 on Smalltalk Related Technologies, 2022.

[CT16] Iuliana Ciocanea Teodorescu. Algorithms for finite rings. PhD thesis, Leiden University and
l’Université de Bordeaux, 2016.

[CW00] Neil Calkin and Herbert S. Wilf. Recounting the rationals. The American Mathematical Monthly,
107(4):360–363, 2000.

[Dix82] John D. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math.,
40(1):137–141, feb 1982.

[EH21] Christian Eder and Tommy Hofmann. Efficient Gröbner bases computation over principal ideal
rings. Journal of Symbolic Computation, 103:1–13, 2021.

[EPP21] Christian Eder, Gerhard Pfister, and Adrian Popescu. Standard bases over Euclidean domains.
Journal of Symbolic Computation, 102:21–36, 2021.

[GM73] G. Ganske and B.R. McDonald. Finite local rings. The Rocky Mountain Journal of Mathematics,
pages 521–540, 1973.

[GP07] Gert-Martin Greuel and Gerhard Pfister. A Singular Introduction to Commutative Algebra. Springer
Publishing Company, Incorporated, 2nd edition, 2007.

[HKC+94] A. Roger Hammons, P. Vijay Kumar, A. Robert Calderbank, Neil J.A. Sloane, and Patrick
Solé. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on
Information Theory, 40(2):301–319, 1994.

[How86] John A. Howell. Spans in the module (Z/m)s. Linear and Multilinear Algebra, 19(1):67–77, 1986.

[Ing81] Daniel H.H. Ingalls. Design principles behind Smalltalk. BYTE magazine, 6(8):286–298, 1981.

[McD74] Bernard R. McDonald. Finite rings with identity, volume 28 of Pure Appl. Math., Marcel Dekker.
Marcel Dekker, Inc., New York, NY, 1974.

[Mor82] Ferdinando Mora. An algorithm to compute the equations of tangent cones. In Proceedings of
the European Computer Algebra Conference on Computer Algebra, EUROCAM ’82, page 158–165,
Berlin, Heidelberg, 1982. Springer-Verlag.

[Mor91] Teo Mora. La queste del saint Gra(AL): A computational approach to local algebra. Discret. Appl.
Math., 33:161–190, 1991.

[Pos18] Sebastian Posur. Linear systems over localizations of rings. Archiv der Mathematik, 111(1):23–32,
apr 2018.

[Pos19] Sebastian Posur. Methods of constructive category theory, 2019.

[Sam71] Pierre Samuel. About Euclidean rings. Journal of Algebra, 19(2):282–301, 1971.

[SM98] Arne Storjohann and Thom Mulders. Fast algorithms for linear algebra modulo N. In Gianfranco
Bilardi, Giuseppe F. Italiano, Andrea Pietracaprina, and Geppino Pucci, editors, Algorithms —
ESA’ 98, pages 139–150, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[SPKP07] Metod Saniga, Michel Planat, Maurice R. Kibler, and Petr Pracna. A classification of the pro-
jective lines over small rings. Chaos, Solitons & Fractals, 33(4):1095–1102, 2007.

[Sto00] Arne Storjohann. Algorithms for matrix canonical forms. PhD thesis, Swiss Federal Institute Of
Technology, Zürich, 2000.

22

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

[TS21] Pierre Lance Tan and Virgilio Sison. Quaternions over Galois rings and their codes, 2021.

[Vul22a] Juan Vuletich. Unicode support in Cuis Smalltalk. In FAST Workshop 2022 on Smalltalk Related
Technologies, 2022.

[Vul22b] Juan Vuletich et al. Cuis Smalltalk, 2022. https://cuis.st.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

[Wan97] Zhe-Xian Wan. Quaternary codes, volume 8 of Series on Applied Mathematics. World Scientific,
Singapore, 1997.

[Zas66] Hans Zassenhaus. The sum-intersection method. Manuscript, Ohio State University, Columbus,
1966.

23

	Introduction
	Domains and Morphisms
	Canonical Morphisms
	Domains with Elements

	Rings and Modules
	Involutive Rings
	Euclidean Rings
	Computable Rings
	Modules
	Product Rings
	Quotient Rings
	Localizations
	Algebras
	Affine Algebras
	Finite Algebras

	Implementation Details and Performance Considerations
	Availability
	Future Work
	Acknowledgements

